LICENSE NUMBER 729641

January 15, 2005

Mr. Arman Toumari

California Regional Water Quality Control Board Los Angeles Region 320 West 4th Street, Suite 200 Los Angeles, California 90013

RE: **G&M Oil Company Station #51**

2155 South Atlantic Boulevard Commerce, California *Transmittal of Site Conceptual Model Update*

Dear Mr. Toumari:

On behalf of the property owner/operator, Atlas Environmental Engineering, Inc. (ATLAS) presents this update to the Site Conceptual Model (SCM) for the subject site (**Figures 1** and **2**). This SCM update has been prepared with the aid of the non-steady state spreadsheet analytical model developed by Messrs. Tom Shih and Yue Rong of the Los Angeles Regional Water Quality Control Board (LARWQCB). The model is intended to delineate the surface and subsurface conditions at the site and near vicinity, define the constituents of concern and their existing as well as projected distribution, and identify any existing and/or potential receptors. In addition, the model can be utilized to identify other possible environmental concerns that need to be addressed. This SCM was prompted by the LARWQCB letter of February 10, 2004. The following sections present a brief description of the site characteristics, model assumptions, input data, model results and a discussion. Please note that much of the descriptive and historic site information has been presented in the "Preliminary Site Conception Model" (PSCM) and it has not been included in this update.

WELLS AND CONDUITS

Based on data provided by the Los Angeles County Hydrogeologic Unit, there are seven (7) active wells within a one-mile radius of the site. The well data is summarized in **Table 1**.

Well 2839C (No. 02S12W08P01S) is the nearest well and is located approximately 1,600-feet from of the site. There are no known oil wells on the subject site.

Based on the depth to groundwater the existing utilities at the site should not act as a potential conduit for transport of contaminants.

There are presently no known active or potentially active faults in the current Alquist-Priolo designated areas. However, the site is within an area designated as a potential liquefaction hazard zone.

GROUNDWATER FLOW DIRECTION AND GRADIENT

On October 10, 2005, depth to groundwater beneath the site ranged from approximately 87-to 88-feet below the top of the well casings. Light non-aqueous phase liquid (LNAPL) was observed in monitoring well MW-11 at an apparent thickness of 0.09-feet. The groundwater depth data collected was used to determine the groundwater flow direction and gradient across the site. Based on the data collected by ATLAS, the flow direction across the site is southwesterly at a gradient of approximately 0.002. A groundwater elevation contour map is presented on **Figure 3**. Groundwater monitoring data is presented in **Table 2**. Status reports, field data, and sampling procedures are included in **Appendix A**.

GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were collected from all wells on October 10, 2005 and submitted to Southland Technical Services, Inc. for analysis. The groundwater samples were analyzed for TPHg and TPHd by EPA Method 8015M and for BTEX plus fuel oxygenates by EPA Method 8260B. Concentrations of TPHg ranged from <50 $\mu g/L$ to 7,480 $\mu g/L$; BTEX ranged from <1 $\mu g/L$ to 1,680 $\mu g/L$; MTBE ranged from <2.0 $\mu g/L$ to 485 $\mu g/L$; and TBA concentrations ranged from <10 $\mu g/L$ to 55.3 $\mu g/L$. TPHd, ETBE, DIPE and TAME were not detected at concentrations exceeding the laboratory detection limits. A summary of groundwater analytical and water quality data is presented in **Table 2**. Field Data and Project Status Reports are included in **Appendix A**. Complete labratory reports are presented in **Appendix B**.

ESTIMATION OF RELEASE MASS

Currently, there are no records available indicating the mass of the release. One documented unauthorized release was initially discovered during failed tank testing conducted by other consultants and verified during a preliminary site investigation performed by ATLAS in 1997. The investigation was limited to the area of the diesel tank pits in the southwest corner of the property. The release was reported by G&M Oil Company. In 1999, during

underground storage tank (UST) removal activities, significant levels of TPHg and TPHd were detected from beneath the USTs located in the north corner of the property. **Figures 4** through **13** present the isoconcentration plots for TPHg, benzene, toluene, ethylbenzene, total xylenes, MTBE, DIPE, ETBE, TAME and TBA using the most current groundwater monitoring data. MTBE concentrations versus time have also been plotted for groundwater monitoring wells MW-3 and MW-12, which are presented as **Figures 14** and **15**.

SOURCE REMOVAL/REMEDIATION ACTIVITES

During May 1999, the former USTs were removed and replaced with double walled storage tanks. During tank removal/replacement activities, approximately 357 tons of petroleum hydrocarbon affected soil was removed from the site.

From September 28, 2004 to September 30, 2004, ATLAS conducted soil vapor extraction (SVE) and aquifer characterization pilot tests. The pilot tests were conducted to determine the optimum soil vapor and groundwater extraction rates to maintain adequate control over the site. The highest vapor concentrations were noted in VW-2S (screened from 20- to 40-feet bgs) with concentrations of TPHg at 54,800 ppmv, BTEX at 2,010 ppmv, MTBE at 545 ppmv, ETBE at <21.50 ppmv, DIPE at 44.9 ppmv, TAME at <21.50 ppmv and TBA at <151.5 ppmv. The highest concentration in the deeper screened wells was observed in VW-1D (screened from 50- to 80-feet bgs) with concentrations of TPHg at 26,400 ppmv, BTEX at 523 ppmv, MTBE at 91.2 ppmv, ETBE at <10.75 ppmv, DIPE at 19.1 ppmv, TAME at <10.75 ppmv and TBA at <75.75 ppmv. Detailed results are included in the ATLAS report titled, "Site Conceptual Model Update and Report of Feasibility Study", dated October 15, 2004. Using the average soil vapor concentration based on the laboratory data, the initial hydrocarbon-loading rate is expected to be 534 lbs/day.

ANALYTICAL MODEL DATA INPUT/ASSUMPTIONS

Messrs. Tom Shih and Yue Rong, with LARWQCB, developed the model utilized for the conditions at the subject site. The non-steady state analytical model is used to predict the plume travel time required to reach a down-gradient receptor, usually an online domestic supply well. Of importance in this study is the additive MTBE. The model is based on a finite mass advection-dispersion partial-differential equation for contaminant transport processes in groundwater. For the model to provide adequate results several assumptions were made, they are:

- Non-steady state (concentration is a function of time),
- ❖ Initial mass discharged is finite and instantaneously introduced as a slug,
- Homogenous aquifer properties,
- No change in groundwater flow direction and velocity,

- ❖ The dispersion coefficients are constant and proportional to the velocity (dynamic dispersion regime), and
- ❖ Contaminant natural degradation is not considered (e.g., no sorption or biodegradation).

SENSITIVITY ANALYSIS

Following the selection of initial input parameters, the model is calibrated by adjusting the data within reasonable ranges to model predictions. Three (3) parameters that significantly effect the output are the longitudinal dispersivity, groundwater velocity and mass of discharge per unit depth. Therefore, several model runs are completed with these values changed to adjust the model predictions to the measured field data. The input data presented below is a result of the model sensitivity adjustments.

SITE SPECIFIC INPUT DATA

The site-specific data is included in **Appendix** C. The two (2) wells utilized for the model predictions were MW-3 and MW-12. The site is depicted on **Figure 1** in relation to the domestic well (sensitive receptor). Based on the data input, the concentration profiles were completed for the two wells which established MTBE concentration profile for the drinking water well (sensitive receptor). **Figure 14** presents a graph of "Field Data and Model Predicated Time vs. MTBE Concentration Profile for Down-Gradient MW-3". **Figure 15** presents a graph of "Field Data and Model Predicated Time vs. MTBE Concentration Profile for Down-Gradient MW-12". **Figure 16** presents "Model Predicted Time vs. MTBE Concentration Profile for Drinking Water Well".

RESULTS/DISCUSSION

Based on the input data and model output results, the plume has the potential to reach the sensitive receptor within 28,000 days with a MTBE concentration of less than 5 μ g/L. Therefore, the likelihood of the existing release (plume) to impact the domestic well at significant contaminant concentrations is remote. Continued quarterly updates of the model predictions will be provided, as needed, using the groundwater monitoring data.

ATLAS proposed the installation of a dual phase extraction remediation system in the report titled "Site Conceptual Model Update and Final Remedial Action Plan", dated January 15, 2005. Currently, ATLAS is in the process of designing the system and piping layouts for the subject site. Once approval is received from the LARWQCB, ATLAS will submit design plans to the City of Commerce.

CLOSING

The work conducted by ATLAS has been performed using generally accepted methods and procedures in the environmental field. ATLAS makes no other warranty, either expressed or implied, concerning the information that is contained within this report. The analysis of the samples were conducted by a California Certified Laboratory, however, no warranty as to the validity of the work conducted by the independent laboratory is implied.

Due to the changing subsurface environment, continuing assessments and/or excavation projects may reveal findings that are different than those which are presented herein. This facet of the environmental profession should be considered when basing professional opinions on limited data collected from the projects performed.

This report is valid as of this date. As a result of the passage of time and changing site conditions or integrity of the USTs, piping, dispensing equipment and monitoring wells, deviations to the information contained in this report may occur. Accordingly, information presented in later reports may invalidate this report in partial or whole form. These conditions are beyond the control of ATLAS, and should be considered in basing continuing assessments on the information contained herein after the passage of time.

This report has been prepared by ATLAS for G&M Oil Company. Submission of this report to the appropriate regulatory agencies/parties is recommended and considered the responsibility of G&M Oil Company.

Respectfully submitted, ATLAS ENVIRONMENTAL ENGINEERING, INC.

Karen Blanchard Project Geologist

cc:

Koren Blanchaus

Karl H. Kerner, R.C.E. 44023 Senior Engineer/Project Manager

Ms. Jennifer L. Talbert, G&M Oil Company, Inc. (w/1 enclosure)

TABLE 1

REGIONAL PRODUCTION WELL DATA

G&M OIL COMPANY, INC., SERVICE STATION #51

COMMERCE, CALIFORNIA

Well Number	Well Number	Date	DTW	Surface Elev.	Water Elev.	MTBE
(LA County)	(State)		(ft.)	(ft.)	(ft.)	
2828C	2S12W07G01	10/10/2000	87.0	168.8	81.8	N/A
2838	2S12W08C01	10/10/1999	131.5	163.3	31.8	N/A
2838A	2S12W07H01	10/10/2000	142.0	174.2	32.2	N/A
2838B	2S12W08F01	10/10/2000	133.0	161.6	28.6	N/A
2839A	2S12W17D02	10/10/2000	108.0	144.7	36.7	N/A
2839B	2S12W17D02	10/10/2000	114.0	146.1	32.1	N/A
2839C	2S12W08P01	10/10/2000	108.0	148.4	40.4	N/A
2859	2S12W09M01	10/10/2000	108.0	160.0	52.0	N/A
2859A	2S12W09M02	10/10/2000	110.0	160.4	50.4	N/A

Note: Gauging data from Los Angeles County Public Works, Hydrologic Div. and analytical data from California Water Quality Monitoring Database.

N/A - Not Available

G&M OIL CO. STATION #51

COMMERCE, CA

Well	Date	SWE	DTW	PT	E-WATER	TPHg	TPHd	Benzene	Toluene	E- Benzene	Xylenes	MTBE	MTBE (8260)	ETBE	DIPE	TAME	T-Butyl Alcohol
MW-1	5/28/2002	148.21	86.14	0.00	62.07	621	<500	118	28.3	4.7	58.3		129	<2	<2	<2	34.7
MW-1	8/27/2002	148.21	86.23	0.00	61.98	433	< 500	31.0	2.1	<1	5.8		113	<2	<2	<2	53.2
MW-1	11/6/2002	148.21	86.61	0.00	61.60	3670	< 500	224	9.3	3.4	18.0		806	<4	<4	<4	42.0
MW-1	2/7/2003	148.21	86.73	0.00	61.48	2780	< 500	144	23.0	5.0	43.0		1640	<4	<4	<4	135
MW-1	5/5/2003	148.21	86.91	0.00	61.30	1670	< 500	66.8	27.6	8.8	39.4		1220	<4	<4	<4	29.1
MW-1	7/22/2003	148.21	86.99	0.00	61.22	6950	< 500	515	123	<50	176		5930	<100	<100	<100	< 500
MW-1	10/22/2003	148.21	87.23	0.00	60.98	3830	< 500	195	26.0	15.0	40.5		2160	<10	<10	<10	<50
MW-1	1/26/2004	148.21	87.55	0.00	60.66	2460	< 500	112	40.0	<20	90.0		1300	<40	<40	<40	<200
MW-1	5/12/2004	148.21	87.64	0.00	60.57	1810	< 500	122	47.3	13.1	41.9		1080	<2	<2	<2	<10
MW-1	8/16/2004	148.21	87.82	0.00	60.39	5070	< 500	494	80.6	40.8	123		3690	<20	<20	<20	<100
MW-1	10/22/2004	148.21	88.14	0.00	60.07	4670	< 500	94.7	6.2	<5	<10		587	<10	<10	<10	<50
MW-1	2/4/2005	148.21	88.29	0.00	59.92	4150	< 500	221	416	<10	450		1680	<20	<20	<20	<100
MW-1	4/4/2005	148.21	88.40	0.00	59.81	273	< 500	2.3	1.0	<1	2.4		149	<2	<2	<2	<10
MW-1	7/5/2005	148.21	88.43	0.00	59.78	106	<500	<1	<1	<1	<2		44.0	<2	<2	<2	<10
SWE	- Surveyed	Well Eleva	ation.	TPHg - Total Petroleum Hydrocarbons as gasoline, EPA 8015M.							- Di-	isopropyl e	ether.			Р	age 1 of 11
DTW	- Depth To	Water.		TPHd	- Total Petro	leum Hyd	drocarbor	ns as diesel,	EPA 8015	ETBI	E - Eth	nyl tertiary-	butyl ether.				
PT	- Product T	hickness ((apparent).	MTBE	- Methyl tert	iary butyl	ether.			TBA	- T-b	utyl alcoho	l.				
E-Water	- Groundwa	ater elevati	ion.	<	- Less than I	aboratory	detectio	n limits.		LPH	- Liqu	uid-Phase I	Hydrocarbor	ns.			
	- Not analy	zed.		NA	- Not Availab	ole.				*	- Sar	mpled on A	Iternate Dat	е			
μg/L	- Micrograi	ms per Lite	er.	TAME	- Tert-amyl n	nethyl eth	ner.			**	- Ob	tained from	n a Higher D	ilution			

G&M OIL CO. STATION #51

COMMERCE, CA

Well	Date	SWE	DTW	PT	E-WATER	TPHg	TPHd	Benzene	Toluene	E- Benzene	Xylenes	MTBE	MTBE (8260)	ETBE	DIPE	TAME	T-Butyl Alcohol
MW-1	10/10/2005	148.21	88.13	0.00	60.08	120	<500	<1	<1	<1	<2		99.3	<2	<2	<2	<10
MW-1		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
MW-2	5/28/2002	148.07	85.93	0.00	62.14	614	< 500	28.7	17.1	8.0	115		20.2	<2	<2	<2	<10
MW-2	8/27/2002	148.07	85.99	0.00	62.08	111	< 500	14.2	1.4	1.3	8.5		3.0	<2	<2	<2	<10
MW-2	11/6/2002	148.07	86.42	0.00	61.65	57.0	< 500	9.0	1.8	1.1	3.9		3.0	<2	<2	<2	<10
MW-2	2/7/2003	148.07	86.52	0.00	61.55	101	< 500	1.0	6.3	7.3	24.4		5.3	<2	<2	<2	<10
MW-2	5/5/2003	148.07	86.69	0.00	61.38	146	< 500	11.2	9.1	5.4	22.3		7.5	<2	<2	<2	<10
MW-2	7/22/2003	148.07	86.81	0.00	61.26	233	< 500	15.6	18.7	6.0	30.2		11.6	<2	<2	<2	<10
MW-2	10/22/2003	148.07	87.04	0.00	61.03	73.0	< 500	5.7	2.7	2.6	8.5		<2	<2	<2	<2	<10
MW-2	1/26/2004	148.07	87.42	0.00	60.65	52.0	< 500	5.9	2.9	2.1	9.9		<2	<2	<2	<2	<10
MW-2 *	5/12/2004	148.07	87.46	0.00	60.61	93.0	< 500	9.0	5.1	3.0	12.7		2.3	<2	<2	<2	21.6
MW-2	8/16/2004	148.07	87.65	0.00	60.42	183	< 500	<1	<1	<1	<2		2.4	<2	<2	<2	<10
MW-2	10/22/2004	148.07	88.00	0.00	60.07	< 50	< 500	5.3	2.9	<1	6.4		<2	<2	<2	<2	<10
MW-2	2/4/2005	148.07	88.14	0.00	59.93	123	< 500	2.1	17.3	<1	28.9		<2	<2	<2	<2	<10
SWE	- Surveyed	Well Eleva	ation.	TPHg - Total Petroleum Hydrocarbons as gasoline, EPA 8015M.							- Di-	isopropyl e	ether.			P	age 2 of 11
DTW	- Depth To	Water.		TPHd	- Total Petro	leum Hyd	drocarbor	ns as diesel,	EPA 8015	ETBI	E - Eth	nyl tertiary-	butyl ether.				
PT	- Product T	hickness (apparent).	MTBE	- Methyl tert	iary butyl	ether.			TBA	- T-b	utyl alcoho	l.				
E-Water	- Groundwa	ater elevati	on.	<	- Less than I	aboratory	detectio	n limits.		LPH	- Liqu	uid-Phase I	Hydrocarbor	ns.			
	- Not analy:	zed.		NA	- Not Availab	ole.				*	- Sar	mpled on A	Iternate Dat	е			
μg/L	- Microgran	ns per Lite	er.	TAME	- Tert-amyl n	nethyl eth	ner.			**	- Ob	tained from	n a Higher D	ilution			

G&M OIL CO. STATION #51

COMMERCE, CA

5 148.07 5 148.07	7 88.29	0.00						Benzene			(8260)				Alcohol
5 148.07			59.78	283	< 500	4.0	30.2	7.6	58.7		4.2	<2	<2	<2	<10
	7 88.30	0.00	59.77	< 50	< 500	<1	<1	<1	<2		<2	<2	<2	<2	<10
05 148.07	7 87.97	0.00	60.10	< 50	< 500	<1	<1	<1	<2		<2	<2	<2	<2	<10
_		_	_	_	_	_	_		_	_		_	_	_	_
147.89	9 86.04	0.00	61.85	6370	< 500	809	362	75.0	670		619	<100	<100	<100	< 500
147.89	9 86.15	0.00	61.74	8210	< 500	690	295	65.0	270		385	<50	< 50	< 50	<250
147.89	9 86.55	0.00	61.34	2890	< 500	687	253	47.1	143		357	<10	<10	<10	<50
3 147.89	9 86.67	0.00	61.22	2570	< 500	597	199	23.0	121		590	<10	<10	<10	<50
3 147.89	9 86.85	0.00	61.04	2740	< 500	635	163	29.3	116		798	<10	<10	<10	<50
3 147.89	9 86.94	0.00	60.95	2780	< 500	864	192	67.6	171		2130	<20	<20	<20	231
03 147.89	9 87.12	0.00	60.77	2630	< 500	540	183	63.5	141		610	<10	<10	<10	<50
147.89	9 87.46	0.00	60.43	3640	< 500	410	221	77.0	259		333	<10	<10	<10	<50
147.89	9 87.54	0.00	60.35	4070	< 500	831	76.3	138	162		732	<4	<4	<4	238
147.89	9 87.72	0.00	60.17	4270	< 500	1190	34.5	193	139		830	<10	<10	<10	286
=.			- · · · · ·					-14 - 5155	5:						
										,				P	age 3 of 11
	ss (annarent)			,		is as alesei,	LI A 0010				-				
			•			n limite				,		ne			
	vauon.			•	GCICCIO	ii iiiilito.		*	•		•				
•								**		•					
000 000 000 000 000 000 000 000 000	005 148.0	005 148.07 87.97 — — — — — — — — — — — — — — — — — — —	005 148.07 87.97 0.00 — — — 002 147.89 86.04 0.00 002 147.89 86.15 0.00 002 147.89 86.55 0.00 03 147.89 86.85 0.00 03 147.89 86.94 0.00 003 147.89 87.12 0.00 004 147.89 87.46 0.00 004 147.89 87.54 0.00 004 147.89 87.72 0.00 eyed Well Elevation. TPHg h To Water. TPHd MTBE ndwater elevation. <	005 148.07 87.97 0.00 60.10 — — — — — 002 147.89 86.04 0.00 61.85 002 147.89 86.15 0.00 61.74 002 147.89 86.55 0.00 61.34 03 147.89 86.85 0.00 61.04 03 147.89 86.94 0.00 60.95 003 147.89 87.12 0.00 60.77 004 147.89 87.46 0.00 60.43 004 147.89 87.54 0.00 60.35 004 147.89 87.72 0.00 60.17 eyed Well Elevation. TPHg - Total Petro th To Water. TPHd - Total Petro uct Thickness (apparent). MTBE - Methyl terf ndwater elevation. - Less than I analyzed. NA - Not Availab	005 148.07 87.97 0.00 60.10 <50 — — — — — — — — — — — — — — — — — — —	005 148.07 87.97 0.00 60.10 <50 <500 — — — — — — — — — — — — — — — — — —	005 148.07 87.97 0.00 60.10 <50 <500 <1	005 148.07 87.97 0.00 60.10 <50 <500 <1 <1 ————————————————————————————————	005 148.07 87.97 0.00 60.10 <50 <500 <1 <1 <1 <1	005 148.07 87.97 0.00 60.10 <50 <500 <1 <1 <1 <1 <2	005 148.07 87.97 0.00 60.10 <50 <500 <1 <1 <1 <1 <1 <2 102 147.89 86.04 0.00 61.85 6370 <500 809 362 75.0 670 102 147.89 86.15 0.00 61.74 8210 <500 690 295 65.0 270 103 147.89 86.55 0.00 61.34 2890 <500 687 253 47.1 143 103 147.89 86.67 0.00 61.22 2570 <500 597 199 23.0 121 103 147.89 86.85 0.00 61.04 2740 <500 635 163 29.3 116 103 147.89 86.94 0.00 60.95 2780 <500 864 192 67.6 171 104 147.89 87.12 0.00 60.77 2630 <500 540 183 63.5 141 105 147.89 87.46 0.00 60.35 4070 <500 410 221 77.0 259 106 147.89 87.54 0.00 60.35 4070 <500 831 76.3 138 162 107 147.89 87.72 0.00 60.17 4270 <500 1190 34.5 193 139 108 147.89 87.72 0.00 60.17 4270 <500 1190 34.5 193 139 109 147.89 87.72 0.00 60.17 4270 <500 1190 34.5 193 139 109 147.89 87.72 0.00 60.17 4270 <500 1190 34.5 193 139 109 147.89 87.72 0.00 60.17 4270 <500 1190 34.5 193 139 100 147.89 87.72 0.00 60.17 4270 <500 1190 34.5 193 139 104 147.89 87.72 0.00 60.17 4270 <500 1190 34.5 193 139 105 15 15 15 15 15 15 15 15 15 15 15 15 15	005 148.07 87.97 0.00 60.10 <50 <500 <1 <1 <1 <1 <1 <2 <2	005 148.07 87.97 0.00 60.10 <50 <500 <1 <1 <1 <1 <2	148.07 87.97 0.00 60.10 <50 <500 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2	005 148.07 87.97 0.00 60.10 <50 <500 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2

G&M OIL CO. STATION #51

COMMERCE, CA

Well	Date	SWE	DTW	PT	E-WATER	TPHg	TPHd	Benzene	Toluene	E- Benzene	Xylenes	MTBE	MTBE (8260)	ETBE	DIPE	TAME	T-Butyl Alcohol
MW-3	10/22/2004	147.89	87.96	0.00	59.93	6660	< 500	1410	798	238	995		708	<10	<10	<10	214
MW-3	2/4/2005	147.89	88.10	0.00	59.79	199	< 500	28.7	26.0	1.9	28.6		70.7	<2	<2	<2	162
MW-3	4/4/2005	147.89	88.32	0.00	59.57	10600	< 500	1970	773	293	1240		1560	<20	<20	<20	658
MW-3	7/5/2005	147.89	88.26	0.00	59.63	6710	< 500	1600	557	270	1130		751	<20	<20	<20	237
MW-3	10/10/2005	147.89	88.00	0.00	59.89	7480	< 500	929	1300	332	1680		268	<20	<20	<20	<100
MW-3		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
MW-4	5/28/2002	148.58	86.71	0.03	61.89	LPH											
MW-4	8/27/2002	148.58	86.81	FILM	61.77	LPH											
MW-4	11/6/2002	148.58	87.17	0.00	61.41	2950	< 500	314	243	47.5	121		149	<10	<10	<10	53.5
MW-4	2/7/2003	148.58	87.31	0.00	61.27	1720	< 500	337	166	31.0	112		282	<5	<5	<5	<25
MW-4	5/5/2003	148.58	87.48	0.00	61.10	720	< 500	210	55.0	22.8	63.0		219	<10	<10	<10	<50
MW-4	7/22/2003	148.58	87.57	0.00	61.01	1370	< 500	280	143	22.4	88.1		288	<10	<10	<10	<50
MW-4	10/22/2003	148.58	87.78	0.00	60.80	700	< 500	161	24.6	13.3	43.4		174	<5	<5	<5	<25
MW-4	1/26/2004	148.58	88.13	0.00	60.45	1350	< 500	174	92.6	17.0	67.5		129	<4	<4	<4	<20
SWE	- Surveyed	Well Fleva	ation	TPHg	- Total Petro	Irocarbon	ns as gasolin	e FPA 801	5M. DIPE	: - Di-	isopropyl e	ther			D	age 4 of 11	
DTW	- Depth To Water. TPHd - Total Petroleum Hydrocarbons as diesel, EPA 801									ETBE		,	butyl ether.			1	иде + 0ј 11
PT	- Product T	hickness (apparent).	MTBE	- Methyl tert	iary butyl	ether.			TBA	- T-b	utyl alcoho	l.				
E-Water	- Groundwa	iter elevati	on.	<	- Less than I	aboratory	detectio	n limits.		LPH	- Liqu	uid-Phase I	Hydrocarbor	ns.			
	- Not analyz	zed.		NA	- Not Availab	ole.				*	- Sar	mpled on A	Iternate Dat	е			
μg/L	- Micrograms per Liter. TAME - Tert-amyl methyl ether.								**	- Ob	tained from	a Higher D	ilution				

G&M OIL CO. STATION #51

COMMERCE, CA

Well	Date	SWE	DTW	PT	E-WATER	TPHg	TPHd	Benzene	Toluene	E- Benzene	Xylenes	MTBE	MTBE (8260)	ETBE	DIPE	TAME	T-Butyl Alcohol
MW-4 *	5/12/2004	148.58	88.18	0.00	60.40	10600	<500	4630	897	469	561		3490	<40	<40	<40	<200
MW-4	8/16/2004	148.58	88.36	0.00	60.22	12200	< 500	4770	1490	226	749		3430	<20	<20	<20	172
MW-4	10/22/2004	148.58	88.63	0.00	59.95	2100	< 500	617	110	27.4	79.3		527	<20	<20	<20	<100
MW-4	2/4/2005	148.58	88.79	0.00	59.79	13700	< 500	3060	4370	196	1650		2400	<20	<20	<20	<100
MW-4	4/4/2005	148.58	88.97	0.00	59.61	1100	< 500	154	63.3	11.5	72.4		431**	<4	<4	<4	<20
MW-4	7/5/2005	148.58	88.98	0.00	59.60	1060	< 500	104	77.5	21.0	106		285	<4	<4	<4	221
MW-4	10/10/2005	148.58	88.64	0.00	59.94	1530	< 500	217	114	29.3	311		485	<4	<4	<4	<20
MW-4		_	_		_	_	_	_	_	_	_			_	_	_	_
MW-5	5/28/2002	147.45	85.60	0.00	61.85	7280	< 500	1100	312	56.3	1550		497	<10	<10	<10	<50
MW-5	8/27/2002	147.45	85.72	0.00	61.73	348	< 500	48.0	8.5	<5	135		104	<10	<10	<10	<50
MW-5	11/6/2002	147.45	86.12	0.00	61.33	483	< 500	47.6	15.6	5.7	22.1		123	<2	<2	<2	<10
MW-5	2/7/2003	147.45	86.25	0.00	61.20	428	< 500	51.6	17.3	<1	31.8		169	<2	<2	<2	<10
MW-5	5/5/2003	147.45	86.44	0.00	61.01	871	< 500	71.8	22.8	8.8	45.3		328	<2	<2	<2	<10
MW-5	7/22/2003	147.45	86.50	0.00	60.95	884	<500	92.6	37.6	8.1	42.3		556	<2	<2	<2	47.2
SWE	- Surveyed	Well Eleva	ation.	TPHg	- Total Petro	drocarbor	ns as gasolir	ne, EPA 801	5M. DIPE	- Di-	isopropyl e	ther.			P	Page 5 of 11	
DTW	- Depth To	Water.		TPHd	- Total Petro	leum Hyd	drocarbor	ns as diesel,	EPA 8015	ETBI	E - Eth	nyl tertiary-	butyl ether.				
PT	- Product T	Γhickness (apparent).	MTBE	- Methyl tert	iary butyl	ether.			TBA	- T-b	utyl alcoho	l.				
E-Water	- Groundwa	ater elevati	on.	<	- Less than I	aboratory	detectio	n limits.		LPH	- Liqu	uid-Phase I	Hydrocarbor	ns.			
	- Not analy	zed.		NA	- Not Availab	ole.				*	- Sar	mpled on A	Iternate Dat	е			
μg/L	- Microgra	ms per Lite	er.	TAME	- Tert-amyl n	nethvl eth	ner.			**	- Ob	tained from	n a Higher D	ilution			

G&M OIL CO. STATION #51

COMMERCE, CA

Well	Date	SWE	DTW	PT	E-WATER	TPHg	TPHd	Benzene	Toluene	E- Benzene	Xylenes	MTBE	MTBE (8260)	ETBE	DIPE	TAME	T-Butyl Alcohol
MW-5	10/22/2003	147.45	86.73	0.00	60.72	225	<500	26.8	12.1	8.4	23.8		159	<2	<2	<2	<10
MW-5	1/26/2004	147.45	87.10	0.00	60.35	135	< 500	17.7	15.0	9.7	35.1		17.7	<2	<2	<2	<10
MW-5	* 5/12/2004	147.45	87.16	0.00	60.29	515	< 500	30.5	3.6	<1	17.6		245	<2	2.3	<2	<10
MW-5	8/16/2004	147.45	87.30	0.00	60.15	991	< 500	220	27.0	3.7	50.2		496	<2	<2	<2	18.0
MW-5	10/22/2004	147.45	87.63	0.00	59.82	97.5	< 500	1.9	<1	<1	4.8		37.8	<2	<2	<2	<10
MW-5	2/4/2005	147.45	87.68	0.00	59.77	136	< 500	28.8	35.8	<1	26.4		17.4	<2	<2	<2	<10
MW-5	4/4/2005	147.45	87.98	0.00	59.47	398	< 500	69.4	33.7	6.9	32.2		108	<2	<2	<2	<10
MW-5	7/5/2005	147.45	88.00	0.00	59.45	113	< 500	<1	1.5	1.1	5.2		27.7	<2	<2	<2	<10
MW-5	10/10/2005	147.45	87.58	0.00	59.87	68.5	< 500	1.3	<1	<1	<2		30.9	<2	<2	<2	<10
MW-5		_	_	_	_	_	_	_	_	_		_	_	_	_	_	_
MW-6	5/28/2002	148.14	86.31	0.23	62.00	LPH											
MW-6	8/27/2002	148.14	86.15	0.01	62.00	LPH											
MW-6	11/6/2002	148.14	87.04	0.60	61.55	LPH											
MW-6	2/7/2003	148.14	87.19	0.57	61.38	LPH											
SWE	- Surveyed	Well Eleva	ation. TPHg - Total Petroleum Hydrocarbons as gasoline, EPA 8015							5M. DIPE	- Di-	isopropyl e	ether.			P	age 6 of 11
DTW	- Depth To	Water.		TPHd	- Total Petro	leum Hyd	drocarbor	ns as diesel,	EPA 8015	ETBI	E - Eth	nyl tertiary-	butyl ether.				
PT	- Product T	hickness ((apparent).	MTBE	- Methyl tert	iary butyl	ether.			TBA	- T-b	utyl alcoho	l.				
E-Water	- Groundwa	ater elevati	ion.	<	- Less than I	aboratory	detectio	n limits.		LPH	- Liqu	uid-Phase I	Hydrocarbor	ns.			
	- Not analy	zed.		NA	- Not Availab	ole.				*	- Sar	mpled on A	Iternate Dat	е			
μg/L	- Micrograi	ms per Lite	er.	TAME	- Tert-amyl n	nethvl eth	ner.			**	- Ob	tained from	n a Higher D	ilution			

G&M OIL CO. STATION #51

COMMERCE, CA

Well	Date	SWE	DTW	PT	E-WATER	TPHg	TPHd	Benzene	Toluene	E- Benzene	Xylenes	MTBE	MTBE (8260)	ETBE	DIPE	TAME	T-Butyl Alcohol
MW-6	5/5/2003	148.14	86.83	0.02	61.33	LPH											
MW-6	7/22/2003	148.14	87.48	0.57	61.09	LPH											
MW-6	10/22/2003	148.14	87.74	0.63	60.88	LPH											
MW-6	1/26/2004	148.14	87.91	0.51	60.62	LPH											
MW-6	* 5/12/2004	148.14	88.04	0.55	60.52	LPH											
MW-6	8/16/2004	148.14	88.15	0.41	60.30	LPH											
MW-6	10/22/2004	148.14	88.17	0.00	59.97	8150	< 500	159	118	58.3	720		107	<2	<2	<2	24.3
MW-6	2/4/2005	148.14	88.28	0.00	59.86	245	< 500	8.7	23.5	2.2	35.5		50.7	<2	<2	<2	30.0
MW-6	4/4/2005	148.14	88.42	0.00	59.72	3970	< 500	39.5	162	57.2	358		77.1	<2	<2	<2	<10
MW-6	7/5/2005	148.14	88.46	0.00	59.68	3080	< 500	9.5	75.4	47.4	249		54.2	<5	<5	<5	<25
MW-6	10/10/2005	148.14	88.12	0.00	60.02	1440	< 500	6.2	30.6	16.9	95.8		135	<5	<5	<5	<25
MW-6		_		_	_	_	_			_	_		_			_	
MW-7	5/12/2004	NA	87.03	0.00	NA	160	< 500	28.5	2.2	1.6	13.4		73.3	<2	<2	<2	<10
MW-7	8/16/2004	147.72	87.26	0.00	60.46	54.4	<500	<1	<1	<1	<2		23.7	<2	<2	<2	<10
SWE	- Surveyed	Well Eleva	ation.	TPHg - Total Petroleum Hydrocarbons as gasoline, EPA 8015M.							- Di-	isopropyl e	ether.			P	age 7 of 11
DTW	- Depth To	Water.		TPHd	- Total Petro	leum Hyd	drocarbor	ns as diesel,	EPA 8015	ETBI	E - Etl	nyl tertiary-	butyl ether.				0 ,
PT	- Product T	hickness ((apparent).	MTBE	- Methyl tert	iary butyl	ether.			TBA	- T-b	utyl alcoho	l.				
E-Water	- Groundwa	ater elevati	ion.	<	- Less than I	aboratory	detectio	n limits.		LPH	- Liqı	uid-Phase I	Hydrocarbor	ns.			
	- Not analy	zed.		NA	- Not Availab	ole.				*	- Saı	mpled on A	lternate Dat	е			
μg/L	y/L - Micrograms per Liter. TAME - Tert-amyl methyl ether.								**	- Ob	tained from	n a Higher D	ilution				

G&M OIL CO. STATION #51

COMMERCE, CA

(Concentration, μ g/L)

Well	Date	SWE	DTW	PT	E-WATER	TPHg	TPHd	Benzene	Toluene	E- Benzene	Xylenes	MTBE	MTBE (8260)	ETBE	DIPE	TAME	T-Butyl Alcohol
MW-7	10/22/2004	147.72	87.48	0.00	60.24	<50	<500	<1	<1	<1	<2		3.2	<2	<2	<2	<10
MW-7	2/4/2005	147.72	87.74	0.00	59.98	<50	< 500	<1	<1	<1	<2		6.6	<2	<2	<2	<10
MW-7	4/4/2005	147.72	87.88	0.00	59.84	376	< 500	92.4	<1	<1	<2		168	<2	<2	<2	<10
MW-7	7/5/2005	147.72	87.87	0.00	59.85	< 50	< 500	<1	<1	<1	<2		10.5	<2	<2	<2	<10
MW-7	10/10/2005	147.72	87.57	0.00	60.15	< 50	< 500	<1	<1	<1	<2		<2	<2	<2	<2	<10
MW-7		_	_	_	_	_	_	_	_	_	_	_		_	_	_	_
MW-8	5/12/2004	NA	87.18	0.00	NA	2750	< 500	975	140	<10	740		853	<20	<20	<20	<100
MW-8	8/16/2004	147.76	87.43	0.00	60.33	405	< 500	85.4	<2.5	<2.5	24.0		75.2	<5	<5	<5	<25
MW-8	10/22/2004	147.76	87.79	0.00	59.97	<50	< 500	<1	<1	<1	<2		4.0	<2	<2	<2	<10
MW-8	2/4/2005	147.76	88.91	0.00	58.85	72.0	< 500	<1	8.5	<1	13.7		4.0	<2	<2	<2	<10
MW-8	4/4/2005	147.76	88.10	0.00	59.66	58.5	< 500	30.6	<1	<1	<2		4.8	<2	<2	<2	<10
MW-8	7/5/2005	147.76	88.12	0.00	59.64	193	< 500	<1	5.9	3.9	22.5		<2	<2	<2	<2	<10
MW-8	10/10/2005	147.76	87.82	0.00	59.94	< 50	< 500	<1	<1	<1	<2		<2	<2	<2	<2	<10
MW-8		_	_	_	_	_	_	_	_	_	_	_		_	_	_	_
SWE DTW PT E-Water	DTW - Depth To Water. TPHd - Total Petroleum Hydrocarbons as diesel, EPA 8015									5M. DIPE ETBI TBA LPH	E - Etl - T-b	utyl alcoho	butyl ether.	ns.		P	age 8 of 11

- Sampled on Alternate Date

- Obtained from a Higher Dilution

- Not analyzed.

μg/L

- Micrograms per Liter.

NA

- Not Available.

TAME - Tert-amyl methyl ether.

G&M OIL CO. STATION #51

COMMERCE, CA

Well	Date	SWE	DTW	PT	E-WATER	TPHg	TPHd	Benzene	Toluene	E- Benzene	Xylenes	MTBE	MTBE (8260)	ETBE	DIPE	TAME	T-Butyl Alcohol
MW-9	5/12/2004	NA	87.19	0.00	NA	278	<500	114	5.7	<1	50.6		4.6	<2	<2	<2	<10
MW-9	8/16/2004	147.64	87.40	0.00	60.24	50.6	< 500	119	<1	<1	<2		2.0	<2	<2	<2	<10
MW-9	10/22/2004	147.64	87.75	0.00	59.89	76.6	< 500	1.3	1.6	<1	14.3		<2	<2	<2	<2	<10
MW-9	2/4/2005	147.64	87.88	0.00	59.76	<50	< 500	7.7	6.3	<1	7.3		<2	<2	<2	<2	<10
MW-9	4/4/2005	147.64	88.06	0.00	59.58	110	< 500	3.1	7.4	2.4	17.3		<2	<2	<2	<2	<10
MW-9	7/5/2005	147.64	88.12	0.00	59.52	51.9	< 500	<1	<1	<1	<2		2.8	<2	<2	<2	<10
MW-9	10/10/2005	147.64	87.67	0.00	59.97	<50	< 500	<1	<1	<1	<2		<2	<2	<2	<2	<10
MW-9		_	_	_	_	_	_	_	_	_	_		_		_	_	_
MW-10	5/12/2004	NA	87.19	0.00	NA	1060	< 500	11.1	<5	<5	12.7		1010	<10	<10	<10	<50
MW-10	8/16/2004	147.50	87.40	0.00	60.10	974	< 500	57.8	1.9	1.2	12.7		711	<2	<2	<2	<10
MW-10	10/22/2004	147.50	87.65	0.00	59.85	1900	< 500	28.3	<2.5	<2.5	13.6		1250	<5	<5	<5	165
MW-10	2/4/2005	147.50	87.89	0.00	59.61	77.9	< 500	18.7	4.0	<1	2.9		23.5	<2	<2	<2	17.5
MW-10	4/4/2005	147.50	88.02	0.00	59.48	210	< 500	1.3	8.2	2.0	16.6		75.1	<2	<2	<2	99.3
MW-10	7/5/2005	147.50	88.03	0.00	59.47	502	<500	<1	2.1	1.7	10.7		261	<2	<2	<2	193
SWE	- Surveyed	Well Eleva	ation.	TPHg - Total Petroleum Hydrocarbons as gasoline, EPA 8015M.							: - Di-	isopropyl e	ether.			P	age 9 of 11
DTW	- Depth To	Water.		TPHd	- Total Petro	leum Hyd	drocarbor	ns as diesel,	EPA 8015	ETBI	E - Eth	nyl tertiary-	butyl ether.				
PT	- Product T	hickness (apparent).	MTBE	- Methyl tert	iary butyl	ether.			TBA	- T-b	utyl alcoho	l.				
E-Water	- Groundwa	ater elevati	on.	<	- Less than I	aboratory	detectio	n limits.		LPH	- Liqu	uid-Phase I	Hydrocarbor	ns.			
	- Not analy	zed.		NA	- Not Availab	ole.				*	- Sar	mpled on A	Iternate Dat	e			
μg/L	g/L - Micrograms per Liter. TAME - Tert-amyl m						ner.			**	- Ob	tained from	n a Higher D	ilution			

G&M OIL CO. STATION #51

COMMERCE, CA

Well	Date	SWE	DTW	PT	E-WATER	TPHg	TPHd	Benzene	Toluene	E- Benzene	Xylenes	MTBE	MTBE (8260)	ETBE	DIPE	TAME	T-Butyl Alcohol
MW-10	10/10/2005	147.50	87.88	0.00	59.62	111	<500	<1	<1	<1	<2		70.0	<2	<2	<2	55.3
MW-10		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
MW-11	5/12/2004	NA	88.27	0.03	NA	LPH											
MW-11	8/16/2004	148.68	88.47	0.03	60.23	LPH											
MW-11	10/22/2004	148.68	88.71	0.01	59.97	LPH											
MW-11	2/4/2005	148.68	78.80	0.00	69.88	2090	< 500	225	317	17.1	201		138	<4	<4	<4	41.7
MW-11	4/4/2005	148.68	87.38	0.00	61.30	324	< 500	33.4	49.8	7.1	53.0		66.4	<4	<4	<4	30.8
MW-11	7/5/2005	148.68	89.02	0.00	59.66	855	< 500	282	50.4	10.4	51.6		183	<2	<2	<2	11.1
MW-11	10/10/2005	148.68	88.76	0.09	59.99	LPH											
MW-11		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
MW-12	5/12/2004	NA	86.60	0.00	NA	188	< 500	39.5	6.7	<1	17.1		60.9	<2	<2	<2	<10
MW-12	8/16/2004	146.77	86.79	0.00	59.98	1040	< 500	379	7.0	<1	29.8		402	<2	<2	<2	<10
MW-12	10/22/2004	146.77	87.06	0.00	59.71	849	< 500	49.6	20.2	6.9	30.8		138	<4	<4	<4	<20
MW-12	2/4/2005	146.77	87.16	0.00	59.61	428	<500	143	8.3	<1	13.6		125	<2	<2	<2	<10
SWE	- Surveyed	Well Eleva	ation.	TPHg - Total Petroleum Hydrocarbons as gasoline, EPA 8015M.							- Di-	isopropyl e	ether.			Pa	ge 10 of 11
DTW	- Depth To	Water.		TPHd	- Total Petro	leum Hyd	drocarbor	ns as diesel,	EPA 8015	ETBI	E - Eth	nyl tertiary-	butyl ether.				
PT	- Product T	hickness (apparent).	MTBE	- Methyl tert	iary butyl	ether.			TBA	- T-b	utyl alcoho	l.				
E-Water	- Groundwa	ater elevati	on.	<	- Less than I	aboratory	detectio	n limits.		LPH	- Liqu	uid-Phase I	Hydrocarbor	ns.			
	- Not analy	zed.		NA	- Not Availab	ole.				*	- Sar	mpled on A	Iternate Dat	е			
μg/L	- Microgran	ms per Lite	er.	TAME	- Tert-amyl n	nethyl eth	ner.			**	- Ob	tained from	n a Higher D	ilution			

G&M OIL CO. STATION #51

COMMERCE, CA

Well	Date	SWE	DTW	PT	E-WATER	TPHg	TPHd	Benzene	Toluene	E- Benzene	Xylenes	MTBE	MTBE (8260)	ETBE	DIPE	TAME	T-Butyl Alcohol
MW-12	4/4/2005	146.77	87.38	0.00	59.39	1160	< 500	12.4	131	26.6	208		23.0	<2	<2	<2	<10
MW-12	7/5/2005	146.77	87.37	0.00	59.40	319	< 500	35.2	36.0	13.4	63.3		16.7	<2	<2	<2	<10
MW-12	10/10/2005	146.77	87.07	0.00	59.70	57.9	< 500	<1	<1	<1	<2		5.2	<2	<2	<2	<10
MW-12		_	_	_	_	_	_	_	_	_	_	_		_	_	_	_

SWE	- Surveyed Well Elevation.	TPHg		Total Petroleum Hydrocarbons as gasoline, EPA 8015M.	DIPE	- Di-isopropyl ether.	Page 11 of 11
DTW	- Depth To Water.	TPHd	-	Total Petroleum Hydrocarbons as diesel, EPA 8015	ETBE	- Ethyl tertiary-butyl ether.	
PT	- Product Thickness (apparent).	MTBE	-	Methyl tertiary butyl ether.	TBA	- T-butyl alcohol.	
E-Water	- Groundwater elevation.	<	-	Less than laboratory detection limits.	LPH	- Liquid-Phase Hydrocarbons.	
	- Not analyzed.	NA	-	Not Available.	*	- Sampled on Alternate Date	
μg/L	- Micrograms per Liter.	TAME	-	Tert-amyl methyl ether.	**	- Obtained from a Higher Dilution	

SOURCE: USGS 7.5 minute topo map, Los Angeles Quadrangle 1964, Photorevised 1994, 3—D TopoQuads, Delorme, 1999

15701 CHEMICAL LANE HUNTINGTON BEACH, CA 92649 PHONE: (714) 890-7129

G&M OIL COMPANY, INC. SERVICE STATION #51

2155 SOUTH ATLANTIC BOULEVARD COMMERCE, CALIFORNIA

SITE LOCATION MAP

DRAWING NUMBER: GM51SLMF1 FIGURE 1

Environmental Products and Services
 * Site Assessment and Remediation
 * Air/Water/Soil Permitting and Monitoring
 * Hazardous Waste Management

Fig. 14 Field Data and Model Predicted Time Vs. MTBE Concentration **Profile for Down-Gradient MW-3** Concentration (ug/L) Time (days) - VWE-2 (Model Prediction) -■- VWE-2 (Field Data)

Fig. 15 Field Data and Model Predicted Time Vs. MTBE Concentration **Profile for Down-Gradient MW-12** 300000 Concentration Time (days) - MW-2 (Model Prediction) -■- MW-2 (Field Data)

Fig. 16 Model Predicted Time Vs. MTBE Concentration Profile for **Drinking Water Well** 0.00001 0.000009 8000000.0 Concentration (ug/L) 0.000007 0.0000006 0.000005 0.000004 0.0000003 0.0000002 0.000001 0 10000 20000 30000 40000 50000 60000 70000 0 Time (days)

→ Drinking Water Well (Model Prediction)

G&M OIL COMPANY STATION #51 QUARTERLY STATUS REPORT 4TH QUARTER 2005

SITE LOCATION: 2155 S. Atlantic Blvd., Commerce, CA 90040

OWNER/OPERATOR: G&M Oil Co., 16868 "A" Street, Huntington Beach, CA 92647

CONTACT: Ms. Jennifer Talbert

LEAD AGENCY: Los Angeles Regional Water Quality Control Board

AGENCY CONTACT: Mr. Arman Toumari

Site Activities this Quarter

Quarterly groundwater monitoring and sampling was performed on October 10, 2005.
 Approx. 564 gal. of groundwater purged prior to sampling wells. Purge water removed utilizing a vacuum truck.

• Additional analytical data presented in **Table 2**.

Future Site Activities

 ATLAS anticipates to continue quarterly groundwater monitoring, sampling and reporting for 1st Quarter 2006.

Quarterly Summary

Janinia y	
Total GW Monitoring Wells:	12
GW Wells Gauged:	12
GW Wells Sampled:	12
Wells with Liquid Phase Hydrocarbons(LPH):	0
Gallons of LPH Removed this Quarter:	0
Gallons of LPH Removed to Date:	4.75
Depth to Groundwater (feet):	87.07 to 88.76
Groundwater Elevation (feet):	59.62 to 60.15
Approximate Groundwater Gradient(ft/ft)	0.002
Approximate Groundwater Flow Direction:	Southwesterly
Consistent with Last Quarter:	Yes

Analytical Summary

TPHd Concentrations	(μ g/L):	<500		
TPHg Concentrations	(μg/L):	<50	to	7,480
Benzene Concentrations	(μg/L):	<1	to	929
Toluene Concentrations	(μg/L):	<1	to	1,300
Ethylbenzene Concentrations	(μg/L):	<1	to	332
Total Xylenes Concentrations	(μg/L):	<2	to	1,680
MTBE (EPA 8260) Concentrations	(μg/L):	<2	to	485
ETBE Concentrations	(μg/L):	<2	to	<20
DIPE Concentrations	(μg/L):	<2	to	<20
TAME Concentrations	(μg/L):	<2	to	<20
TBA Concentrations	(μg/L):	<10	to	55.3

G51-Q405.xls Page 1 of 1

ATLAS ENVIRONMENTAL ENGINEERING, INC.

15701 CHEMICAL LANE HUNTINGTON BEACH, CA 92649 (714) 890 - 7129 PROJECT STATUS REPORT

G&M OIL COMPANY S.S. #51

2155 S. ATLANTIC BOULEVARD

COMMERCE, CA 90040

AE JOB NO./INV.: G51-Q405

DATE: OCTOBER 10, 2005

OBSERVATION WELLS

NO.	DTW	DTP	PT	GALLONS	DTB	DIA.	Е	LEVATIC	N		ODOR	S	F/I	Р
QU	ARTERLY	,	FEET	REMOVED	FEET	INCH.	CDTW	SWE	E-WAT	YES	NO	SLIGHT	YES	NO
MW-1	88.13			57.00	109.75	4.00	88.13	148.21	60.08	-	Х	-	-	Х
MW-2	87.97			53.00	108.10	4.00	87.97	148.07	60.10	-	Х	-	-	Х
MW-3	88.00			55.00	108.88	4.00	88.00	147.89	59.89	-	Х	-	-	Х
MW-4	88.64			49.00	107.12	4.00	88.64	148.58	59.94	-	Х	-	-	Х
MW-5	87.58			52.00	107.28	4.00	87.58	147.45	59.87	-	Х	_	-	Х
MW-6	88.12			48.00	106.36	4.00	88.12	148.14	60.02	-	Х	-	-	Х
MW-7	87.57			49.00	106.34	4.00	87.57	147.72	60.15	-	Х	_	-	Х
MW-8	87.82			32.00	99.82	4.00	87.82	147.76	59.94	-	Х	-	-	Х
MW-9	87.67			48.00	105.86	4.00	87.67	147.64	59.97	-	Х	-	_	Х
MW-10	87.88			54.00	108.33	4.00	87.88	147.50	59.62	-	Х	-	_	Х
MW-11	88.76	88.67	0.09	25.00	106.44	4.00	88.69	148.68	59.99	-	Х	-	_	Х
MW-12	87.07			52.00	106.68	4.00	87.07	146.77	59.70	-	Х	-	-	Х

EXPLANATION

MEASUREMENTS IN FEET

DTW - DEPTH TO WATER FROM SURFACE DTP - DEPTH TO

DTP - DEPTH TO PRODUCT FROM SURFACE

DTB - DEPTH TO BOTTOM

PT - PRODUCT THICKNESS DIA - WELL DIAMETER F/P - FREE PRODUCT

SWE - SURVEYED WELL HEAD ELEVATION

E-WAT - ELEVATION OF WATER

CDTW - CORRECTED DEPTH TO WATER FOR PRESENCE OF FREE PRODUCT (USING SPECIFIC GRAVITY OF 0.755)

REMARKS

QUARTERLY SAMPLI	NG								
THE REMOVED PRODUCT AND/OR PRODUCT/GROUNDWATER MIXTURE WAS									
REMOVED U	SING A VACUUM	TRUCK WITH A STORA	GE TANK, FOR PROPER						
DISPOSAL E	Y GENERATOR.								
FREE PRODUCT REMOVED:	APPROX.	0.25 GALLONS	TOTAL TO DATE:	5.00 GALLONS					
GROUNDWATER(*) REMOVE	: APPROX. 50	GALLONS	TOTAL TO DATE:	6300.00 GALLONS					
(*) PRODUCT/GROUNDWATEF	MIXTURE/DECON	I. WATER							
55 GALLON DRUM:	PROD. WATER	GALLONS GALLONS	DIA TD	DTW					
DATA RECORDED BY: FEI	.IX VELASQUEZ/ R	OGER GONZALEZ	INPUT	BY: KB					

SITE/JOB	G&M OIL STATION #51	DATE	10/10/2005
ADDRESS	2155 S. ATLANTIC BLVD)., COMMERCE, CA 9	0040
PERSONNEL	FELIX/ROGER	WEATHER	SUNNY
WELL NO	MW-1	EQUIPMENT	VACUUM TRUCK

	В	efore F	urging		
Total Well Depth	109.75	Ft.	Well Diameter	4.00	_ Inch.
Depth to Water	88.13	Ft.	Est. Purge Vol.	56.47	_ Gal.

Sampling Data										
Initial Turbidity_				nal Turbidity	8.16					
D.O	3.80	ppm	0	RP	106.00	mV				
Time (MT)	750	757	805	813_	829					
EC	1669	1452	1428	1428	1423					
pH _	7.90	8.01	8.05	8.02	8.02					
Temp. (°F) _	67.6	67.3	66.3	66.3	67.1					
(°C) _	19.8	19.6	19.05	19.04	19.50					
Gal	10.00	20.00	30.00	40.00	57.00					
Time (MT) _										
EC										
pH _										
Temp. (°F) _										
(°C) _										
Gal.										

	After Purging/	Before	Sample Collection	ı	
Depth to Water	91.36	Ft.	Total Well Depth	109.75	Ft.

SITE/JOB	G&M OIL STATION #51	DATE	10/10/2005
ADDRESS	2155 S. ATLANTIC BLVD	D., COMMERCE, CA 9	00040
PERSONNEL	FELIX/ROGER	WEATHER	SUNNY
WELL NO	MW-2	EQUIPMENT	VACUUM TRUCK

	E	efore F	urging		
Total Well Depth	108.10	Ft.	Well Diameter	4.00	_ Inch.
Depth to Water	87.97	Ft.	Est. Purge Vol.	52.58	_ Gal.

	Sampling Data										
Initial Turbidity _ D.O	90.20 2.40	ppm		Final Turbidity	3.29 69.00	mV					
Time (MT) EC pH Temp. (°F) (°C) Gal.	904 1189 7.86 76.8 24.9 9.00	910 1190 7.88 15.4 23.9 18.00	916 1198 7.85 74.1 23.4 27.00	922 1232 7.70 71.8 22.1 36.00	928 1205 7.73 73.0 22.8 45.00	935 1225 7.73 72.3 22.4 53.00					
Time (MT) _ EC _ pH _ Temp. (°F) _ (°C) _ Gal.											

	After Purging/	Before	Sample Collection	1	
Depth to Water	90.26	Ft.	Total Well Depth	108.10	Ft.

SITE/JOB	G&M OIL STATION #51	DATE	10/10/2005
ADDRESS	2155 S. ATLANTIC BLVD)., COMMERCE, CA 9	0040
PERSONNEL	FELIX/ROGER	WEATHER	SUNNY
WELL NO	MW-3	EQUIPMENT	VACUUM TRUCK

	Ε	efore F	Purging		
Total Well Depth	108.88	Ft.	Well Diameter	4.00	_ Inch.
Depth to Water	88.00	Ft.	Est. Purge Vol.	54.54	_ Gal.

	Sampling Data								
Initial Turbidity _ D.O.	96.40 2.40	ppm		Final Turbidity ORP	3.48 66.00	mV			
Time (MT) EC pH Temp. (°F) (°C) Gal.	1300 1294 7.83 79.3 26.3 9.00	1306 1397 7.76 15.4 25.9 18.00	1312 1423 7.73 77.5 25.3 27.00	1318 1456 7.69 77.5 25.3 36.00	1324 1502 7.65 75.92 24.4 45.00	1332 1535 7.65 74.5 23.6 55.00			
Time (MT) _ EC _ pH _ Temp. (°F) _ (°C) _ Gal.									

	After Purging/	Before	Sample Collection	1	
Depth to Water	89.96	Ft.	Total Well Depth	108.88	Ft.

SITE/JOB	G&M OIL STATION #51	DATE	10/10/2005
ADDRESS	2155 S. ATLANTIC BLVD)., COMMERCE, CA 9	0040
PERSONNEL	FELIX/ROGER	WEATHER	SUNNY
WELL NO	MW-4	EQUIPMENT	VACUUM TRUCK

	E	efore F	urging		
Total Well Depth	107.12	Ft.	Well Diameter	4.00	_ Inch.
Depth to Water	88.64	Ft.	Est. Purge Vol.	48.27	_ Gal.

Sampling Data								
Initial Turbidity_	86.60			inal Turbidity	3.88			
D.O	2.60	ppm	()RP	28.70	mV		
Time (MT) _	1340	1346	1352	1358	1408			
EC _	1373	1364	1381	1384	1371			
pH _	7.92	7.78	7.74	7.72	7.72			
Temp. (°F) _	77.0	15.4	75.9	75.6	75.6			
(°C)	25.0	24.7	24.4	24.2	24.2			
Gal	9.00	18.00	27.00	36.00	49.00			
Time (MT)								
EC								
pH								
Temp. (°F)								
(°C)								
Gal.								

	After Purging/	Before	Sample Collection	1	
Depth to Water	90.49	Ft.	Total Well Depth	107.12	Ft.

SITE/JOB	G&M OIL STATION #51	DATE	10/10/2005					
ADDRESS	2155 S. ATLANTIC BLVD., COMMERCE, CA 90040							
PERSONNEL	FELIX/ROGER	WEATHER	SUNNY					
WELL NO	MW-5	EQUIPMENT	VACUUM TRUCK					

	Е	efore F	urging		
Total Well Depth	107.28	Ft.	Well Diameter	4.00	_ Inch.
Depth to Water	87.58	Ft.	Est. Purge Vol.	51.46	_ Gal.

	Sampling Data								
Initial Turbidity _ D.O	90.60 3.40	ppm		Final Turbidity	3.60 76.00	mV			
Time (MT) _ EC _ pH _ Temp. (°F) _ (°C) _	1415 1230 7.84 77.5 25.3 9.00	1421 1178 7.83 15.4 25.9 18.00	1427 1186 7.79 77.7 25.4 27.00	1433 1195 7.78 77.0 25.0 36.00	1440 1193 7.76 77.2 25.1 45.00	1446 1199 7.76 76.3 24.6 52.00			
Time (MT) _ EC _ pH _ Temp. (°F) _ (°C) _ Gal.									

	After Purging/	Before	Sample Collection	1	
Depth to Water	90.19	Ft.	Total Well Depth	107.28	Ft.

SITE/JOB	G&M OIL STATION #51	DATE	10/10/2005
ADDRESS	2155 S. ATLANTIC BLVD.	, COMMERCE, CA 9	0040
PERSONNEL	FELIX/ROGER	WEATHER	SUNNY
WELL NO	<i>MW</i> -6	EQUIPMENT	VACUUM TRUCK

	E	Before F	Purging		
Total Well Depth	106.36	Ft.	Well Diameter	4.00	_ Inch.
Depth to Water	88.12	Ft.	Est. Purge Vol.	47.64	_ Gal.

Sampling Data									
Initial Turbidity _ D.O.	>200 2.40	ppm		inal Turbidity PRP	3.88 66.00	mV			
Time (MT) _ EC _ pH _ Temp. (°F) _ (°C) _ Gal.	1015 1306 7.97 79.2 26.2 9.00	1020 1365 8.02 15.4 24.6 18.00	1025 1310 8.02 77.0 25.0 27.00	1030 1309 8.02 77.2 25.1 36.00	1035 1309 8.02 74.7 23.7 48.00				
Time (MT) _ EC _ pH _ Temp. (°F) _ (°C) _ Gal.									

	After Purging/	Before	Sample Collection	1	
Depth to Water	90.02	Ft.	Total Well Depth	106.36	Ft.

SITE/JOB	G&M OIL STATION #51	DATE	10/10/2005
ADDRESS	2155 S. ATLANTIC BLVD)., COMMERCE, CA 9	0040
PERSONNEL	FELIX/ROGER	WEATHER	SUNNY
WELL NO	<i>MW-7</i>	EQUIPMENT	VACUUM TRUCK

	Ε	efore F	urging		
Total Well Depth	106.34	Ft.	Well Diameter	4.00	_ Inch.
Depth to Water	87.57	Ft.	Est. Purge Vol.	49.03	_ Gal.

Sampling Data								
Initial Turbidity_	90.40		Fi	nal Turbidity	3.34			
D.O.	3.00	ppm	0	RP	80.00	mV		
Time (MT)	833	838	844	850	857			
EC	1254	1217	1223	1220	1217			
pH	7.82	7.85	7.85	7.86	7.86			
Temp. (°F)	69.1	15.4	70.7	70.9	71.1			
(°C)	20.6	21.5	21.5	21.6	21.7			
Gal.	10.00	20.00	30.00	40.00	49.00			
Time (MT)								
EC								
pН								
Temp. (°F)								
(°C) –								
Gal.								

	After Purging/	Before	Sample Collection	1	
Depth to Water	90.01	Ft.	Total Well Depth	106.34	Ft.

SITE/JOB	G&M OIL STATION #51	DATE	10/10/2005
ADDRESS _	2155 S. ATLANTIC BLVD	., COMMERCE, CA 9	0040
PERSONNEL	FELIX/ROGER	WEATHER	SUNNY
WELL NO	MW-8	EQUIPMENT	VACUUM TRUCK

	В	efore F	urging		
Total Well Depth	99.82	Ft.	Well Diameter	4.00	_ Inch.
Depth to Water	87.82	Ft.	Est. Purge Vol.	31.34	_ Gal.

	Sampling Data								
Initial Turbidity _ D.O	87.50 2.40	ppm		inal Turbidity	3.26 40.00	mV			
Time (MT) _ EC _ pH _ Temp. (°F) _ (°C) _ Gal.	946 1200 8.00 22.5 24.4 6.00	950 1268 7.98 15.4 23.8 12.00	955 1252 7.96 74.8 23.8 18.00	1000 1260 7.88 73.6 23.1 24.00	1005 1248 7.88 75.2 24.0 32.00				
Time (MT) _ EC _ pH _ Temp. (°F) _ (°C) _									

	After Purging/	Before	Sample Collection		
Depth to Water	90.11	Ft.	Total Well Depth	99.82	Ft.

SITE/JOB	G&M OIL STATION #51	DATE	10/10/2005
ADDRESS	2155 S. ATLANTIC BLVD)., COMMERCE, CA 9	0040
PERSONNEL	FELIX/ROGER	WEATHER	SUNNY
WELL NO	<i>MW-</i> 9	EQUIPMENT	VACUUM TRUCK

	E	Sefore F	Purging		
Total Well Depth	105.86	Ft.	Well Diameter	4.00	_ Inch.
Depth to Water	87.67	Ft.	Est. Purge Vol.	47.51	_ Gal.

Sampling Data								
Initial Turbidity_	98.70		Fi	nal Turbidity	3.66			
D.O	3.00	ppm	0	RP	77.00	mV		
Time (MT)	1048	1053	1058	1103	1110			
EC	1172	1206	1196	1187	1210			
pH	7.85	7.93	7.88	7.87	7.87			
Temp. (°F)	80.4	15.4	75.4	75.0	75.0			
(°C)	26.9	24.6	24.1	23.9	23.9			
Gal.	9.00	18.00	27.00	36.00	36.00			
Time (MT)								
EC								
pH								
Temp. (°F)								
(°C)								
Gal.								

	After Purging/	Before	Sample Collection	1	
Depth to Water	90.02	Ft.	Total Well Depth	105.86	Ft.

SITE/JOB	G&M OIL STATION #51	DATE	10/10/2005
ADDRESS	2155 S. ATLANTIC BLVE	D., COMMERCE, CA 9	0040
PERSONNEL	FELIX/ROGER	WEATHER	SUNNY
WELL NO	MW-10	EQUIPMENT	VACUUM TRUCK

	E	Before F	Purging		
Total Well Depth	108.33	Ft.	Well Diameter	4.00	_ Inch.
Depth to Water	87.78	Ft.	Est. Purge Vol.	53.68	_ Gal.

	Sampling Data								
Initial Turbidity _ D.O	90.60	ppm		Final Turbidity ORP	3.60 97.00	mV			
Time (MT) EC pH Temp. (°F) (°C) Gal.	1120 1205 7.96 80.8 27.1 9.00	1226 1243 6.96 15.4 25.2 18.00	1232 1247 7.82 75.6 24.2 27.00	1238 1280 7.88 76.3 24.6 36.00	1244 1260 7.78 76.1 24.5 45.00	1251 1270 7.78 75.4 24.1 54.00			
Time (MT) _ EC _ pH _ Temp. (°F) _ (°C) _									

	After Purging/	Before	Sample Collection	ı	
Depth to Water	90.66	Ft.	Total Well Depth	108.33	Ft.

SITE/JOB	G&M OIL STATION #51	DATE	10/10/2005
ADDRESS	2155 S. ATLANTIC BLVE	D., COMMERCE, CA 9	00040
PERSONNEL	FELIX/ROGER	WEATHER	SUNNY
WELL NO	MW-12	EQUIPMENT	VACUUM TRUCK

	E	efore F	Purging		
Total Well Depth	106.68	Ft.	Well Diameter	4.00	_ Inch.
Depth to Water	87.07	Ft.	Est. Purge Vol.	51.22	_ Gal.

	Sampling Data								
Initial Turbidity _ D.O	92.60 3.20	ppm		Final Turbidity ORP	3.26 96.00	mV			
Time (MT) _ EC _ pH _ Temp. (°F) _ (°C) _ Gal.	1525 1178 7.75 82.8 28.2 9.00	1536 1196 7.77 15.4 25.7 18.00	1542 1219 7.76 76.3 24.6 27.00	1548 1211 7.74 75.4 24.1 36.00	1554 1225 7.73 74.1 23.4 45.00	1602 1220 7.73 73.9 23.3 52.00			
Time (MT) _ EC _ pH _ Temp. (°F) _ (°C) _									

	After Purging/	Before	Sample Collection	1	
Depth to Water	91.36	Ft.	Total Well Depth	106.68	Ft.

SAMPLING PROCEDURES FOR GROUNDWATER

Sample Collection - Purging Method

- 1. Integrity of the well cover, well cap and top of casing are established and noted for future reference.
- 2. Non-dedicated equipment is decontaminated using a steam cleaner or "three bucket" wash
- 3. Depth to water, depth to product (if present) and total depth of well are determined using an Oil Recovery Systems' Interface probe or equivalent (0.01 accuracy).
- 4. Groundwater is removed from the well by bailing or pumping until dry or until at least 4 well volumes have been purged and water quality parameters (pH, conductivity and temperature) stabilized. The water is discharged into DOT 55 gallon drums.
- 5. After the well has recovered at least 80 percent, a sample is taken just below the water surface using a bailer (teflon, stainless steel or disposable bottom emptying) and placed into a laboratory supplied containers. The containers are completely filled and the cap immediately placed over the top and securely tightened. Vials are inverted and tapped to determine if air bubbles are present. Samples are labeled, and placed on ice until delivery to the laboratory.

Sample Collection - No Purge Method

- 1. Integrity of the well cover, well cap and top of casing are established and noted for future reference
- 2. Non-dedicated equipment is decontaminated using a steam cleaner or "three bucket" wash.
- 3. Depth to water, depth to product (if present) and total depth of well are determined using an Oil Recovery Systems' Interface probe or equivalent (0.01 accuracy).
- 4. A sample is taken just below the water surface using a bailer (Teflon, stainless steel or disposable, all bottom emptying) and placed into a laboratory supplied vial. The vial is completely filled, cap immediately placed over the top and securely tightened. The vial is inverted and tapped to determine if air bubbles are present. If none, the sample is labeled, and placed on ice until delivery to the laboratory.

Quality Control/Quality Assurance

- 1. The field data sheet is completed with all pertinent data such as; integrity of well, quantity of water purged, pH, temperature, and specific conductance, if available.
- 2. The samples are transported to the laboratory as soon as possible following chain-of-custody procedures. In the event a holding time of greater than 7 days is required, the laboratory will be requested to supply vials with the appropriate preservatives for the analyses requested.
- 3. Wells are sampled from the order of least to highest concentrations, if known.
- 4. Site conditions are noted which may potentially contaminate the sample i.e. smoke, vapors from running engines, etc.
- 5. If a single bailer is used for collection of all samples, an "equipment blank" sample will be collect following the same protocol of sample collection. The same water supply used to rinse the equipment will be used to collect the blank sample.
- 6. A trip blank, if required, supplied by the analytical laboratory will be stored and transported with the samples until their delivery back to the laboratory.
- 7. The blank samples will be analyzed for all constituents.

Sample Shipment and Chain-of-Custody

Complete records are kept on each sample including sampling date, sample type, location, and other pertinent information. The sample containers are banded and sealed with chain-of-custody seals. The samples are chilled in an ice chest using block or blue ice. Care is taken not cause sample freezing which may result in container breakage during transport to the laboratory.

Chain-of-Custody procedures, generally described in <u>Test Methods for Evaluating Solid Waste</u>, SW-846, U.S. EPA, 1982, are followed. A chain-of-custody form accompanies the sample from the place of collection to the laboratory, and through the completion of the analytical process. The chain-of-custody form includes project identification information, the sample type and number, the date and time of sampling, the chemical analyses requested, and the identity of the person taking possession at each change of custody.

Equipment Cleaning

When steam-cleaning is not available, the "three bucket" wash is used. The three bucket wash consists of an Alconox solution cleaning, a tap water rinse and a distilled water rinse. No solvent (hexane) rinses will be used. For bailers, the Alconox solution is flushed completely through the inside followed by flushing with tap and distilled water. When submersible, bladder or double-diaphragm pumps are used (non-dedicated), the solution of Alconox is cycled through the pump body and hoses followed by similar water rinses.

Waste Storage and Disposal

The effluent and/or decontamination water generated during the testing and equipment cleaning is placed in 55 gallon D.O.T. drums. The drums are sealed, labeled and left on site pending disposal/treatment by owner.

Environmental Laboratories

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD **LOS ANGELES REGION**

LABORATORY REPORT FORM (COVER PAGE 1)

Laboratory Name:	Southnland Technical Services Environmental Labs
Address:	7801 Telegraph Road, Suite L. Montebello, CA 90640
Telephone/Fax:	(323) 888-0728 / (323) 888-1509
ELAP Certification No	.: <u>1986</u> Expiration Date: <u>04-30-2006</u>
Authorized Signature Name, Title (Print):	Roger Wang, Laboratory Director
Signature, Date:	, 10-17-2005
Client: Project: Project Site: Lab Job No.:	Atlas Environmental Engineering G & M Oil Co. #51 2155 S. Atlantic Blvd., Commerce, CA. R510045
Date(s) Sampled:	<u>10-10-2005</u> To <u>10-10-2005</u>
Date(s) Received:	<u>10-10-2005</u> To <u>10-10-2005</u>
Date(s) Reported:	<u>10-17-2005</u>
Chain of custody receiv	ved: Yes X No

Environmental Laboratories

$\frac{\text{CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD}}{\text{LOS ANGELES REGION}}$

LABORATORY REPORT FORM (COVER PAGE 2)

Organic Analyses	# of Samples:	# of Samples Subcontracted:
EPA 8015M (Gasoline)	11	0
EPA 8015M (Diesel)	11	0
EPA 8260B (BTEX & Oxygenates)	11	0
Methane by GC/FID	11	0
Sample Condition: Chilled	d, intact, good condition	
Inorganic Analyses	# of Samples:	# of Samples Subcontracted:
Nitrate (EPA 352.1)	11	0
Sulfate (EPA 375.4)	11	0
Ferrous Iron (Colormetry)	11	0
Sample Condition: Chilled	d, intact, good condition	
Microbiological Analyses	# of Samples:	# of Samples Subcontracted:
	0	0
Sample Condition:		
Other Types of Analyses	# of Samples:	# of Samples Subcontracted:
	0	0
Sample Condition:		

Environmental Laboratories

ANALYTICAL TEST RESULT

Reporting Unit: µg/L (ppb)

Date of Analysis fo	or TPH (Ga	soline)	10-13-05	10-13-05	10-13-05	10-13-05	10-13-05	10-13-05
Date of Extraction fo	or TPH (Ga	asoline)	NA	NA	NA	NA	NA	NA
Extraction Method for	or TPH (Ga	asoline)	5030	5030	5030	5030	5030	5030
Dilution Factor fo	or TPH (Ga	asoline)	1	1	1	10	2	1
Date of Analysis	s for TPH ((Diesel)	10-12-05	10-12-05	10-12-05	10-12-05	10-12-05	10-12-05
Date of Extraction	n for TPH ((Diesel)	10-12-05	10-12-05	10-12-05	10-12-05	10-12-05	10-12-05
xtraction Solven	t for TPH (Diesel)	Hexane	Hexane	Hexane	Hexane	Hexane	Hexane
Dilution Factor	r for TPH ((Diesel)	1	1	1	1	1	1
т.	AB SAMP	TEID		R510045-	R510045-	R510045-	R510045-	R510045-
LAD SAMI LE I.D.			1	2	3	4	5	
CLIE	NT SAMP	LE I.D.		MW-1	MW-2	MW-3	MW-4	MW-5
COMPOUND	COMPOUND MDI		MB					
TPH-Gasoline (C4 - C12)		50	ND	120	ND	7,480	1,530	68.5
TPH-Diesel (C13 - C23)		500	ND	ND	ND	ND	ND	ND
Surrogate	Spk Conc.	ACP%	MB %RC	%RC	%RC	%RC	%RC	%RC
BFB (for TPH-Gasoline)	20 ppb	70-130	97	96	97	96	97	95
Diocthyl Phthalate (for TPH-Diesel)	5 ppm	70-130	125	95	78	83	85	85

SPK Conc.=Spiking Concentration; ACP%=Acceptable Range of Percent; %RC=% Recovery MDL=Method Detection Limit; MB=Method Blank; ND=Not Detected(Below MDL); NA=Not Analyzed

Environmental Laboratories

ANALYTICAL TEST RESULT

Reporting Unit: µg/L (ppb)

Date of Analysis fo	or TPH (Ga	asoline)	10-13-05	10-13-05	10-13-05	10-13-05	10-13-05	10-13-05
Date of Extraction fo	or TPH (Ga	asoline)	NA	NA	NA	NA	NA	NA
Extraction Method for	or TPH (Ga	asoline)	5030	5030	5030	5030	5030	5030
Dilution Factor fo	or TPH (Ga	asoline)	2.5	1	1	1	1	1
Date of Analysis	s for TPH ((Diesel)	10-12-05	10-12-05	10-12-05	10-12-05	10-12-05	10-12-05
ate of Extraction	n for TPH ((Diesel)	10-12-05	10-12-05	10-12-05	10-12-05	10-12-05	10-12-05
Extraction Solven	t for TPH ((Diesel)	Hexane	Hexane	Hexane	Hexane	Hexane	Hexane
Dilution Factor	r for TPH ((Diesel)	1	1	1	1	1	1
T	AB SAMP	IEID	R510045-	R510045-	R510045-	R510045-	R510045-	R510045-
L	LAD SAMI LE I.D.		6	7	8	9	10	11
CLIE	NT SAMP	LE I.D.	MW-6	MW-7	MW-8	MW-9	MW-10	MW-12
COMPOUND	COMPOUND MDL							
TPH-Gasoline (C4 - C12)		50	1,440	ND	ND	ND	111	57.9
TPH-Diesel (C13 - C23)		500	ND	ND	ND	ND	ND	ND
Surrogate	Spk Conc.	ACP%	%RC	%RC	%RC	%RC	%RC	%RC
BFB (for TPH-Gasoline)	20 ppb	70-130	96	95	99	100	99	103
Diocthyl Phthalate (for TPH-Diesel)	5 ppm	70-130	95	93	95	93	80	88

SPK Conc.=Spiking Concentration; ACP%=Acceptable Range of Percent; %RC=% Recovery MDL=Method Detection Limit; MB=Method Blank; ND=Not Detected(Below MDL); NA=Not Analyzed

Environmental Laboratories

ANALYTICAL TEST RESULT (EPA 8260B)

Reporting Unit: µg/L (ppb)

DAT	TE ANAI	LYZED	10-13-05	10-13-05	10-13-05	10-13-05	10-13-05	10-13-05
DATE	EEXTRA	CTED						
DILU	DILUTION FACTOR		1	1	1	10	2	1
T A 1	B SAMP	IFID	Blank	R510045-	R510045-	R510045-	R510045-	R510045-
LAI	b SAWII	LE I.D.	Dialik	1	2	3	4	5
CLIEN	Γ SAMP	LE I.D.		MW-1	MW-2	MW-3	MW-4	MW-5
COMPOUND	MDL	EQL	MB					
Benzene	1	1	ND	ND	ND	929	217	1.3
Toluene	1	1	ND	ND	ND	1,300	114	ND
Ethylbenzene	1	1	ND	ND	ND	332	29.3	ND
Total Xylenes	2	2	ND	ND	ND	1,680	311	ND
Methyl tert-butyl Ether	2	2	ND	99.3	ND	268	485	30.9
Ethyl t-butyl Ether	2	2	ND	ND	ND	ND	ND	ND
Di-isopropyl Ether	2	2	ND	ND	ND	ND	ND	ND
T-amyl-methyl Ether	2	2	ND	ND	ND	ND	ND	ND
Tert-Butanol	10	10	ND	ND	ND	ND	ND	ND
SURROGATE	SPK CONC.	ACP%	MB %RC	%RC	%RC	%RC	%RC	%RC
Dibromofluoro-methane	25ppb	70-130	87	87	85	90	88	92
Toluene-d8	25ppb	70-130	80	84	79	87	90	79
Bromofluoro-benzene	25ppb	70-130	106	105	105	105	110	104

SPK Conc.=Spiking Concentration; ACP%=Acceptable Range of Percent; %RC=% Recovery

MDL=Method Detection Limit; MB=Method Blank; ND=Not Detected(Below MDL); NA=Not Analyzed;

EQL=Estimated Quantification Limit

J=above MDL but below EQL

Southland Technical Services, Inc. Environmental Laboratories

ANALYTICAL TEST RESULT (EPA 8260B)

Reporting Unit: µg/L (ppb)

r								
DAT	E ANAL	YZED	10-13-05	10-13-05	10-13-05	10-13-05	10-13-05	10-13-05
DATE	EXTRA	CTED						
DILUT	TION FA	CTOR	2.5	1	1	1	1	1
1 4 1	B SAMPI	FID	R51004	R510045-	R510045-	R510045-	R510045-	R510045-
LAI	SAMIT	LE I.D.	5-6	7	8	9	10	11
CLIEN	Γ SAMPI	LE I.D.	MW-6	MW-7	MW-8	MW-9	MW-10	MW-12
COMPOUND	MDL	EQL						
Benzene	1	1	6.2	ND	ND	ND	ND	ND
Toluene	1	1	30.6	ND	ND	ND	ND	ND
Ethylbenzene	1	1	16.9	ND	ND	ND	ND	ND
Total Xylenes	2	2	95.8	ND	ND	ND	ND	ND
Methyl tert-butyl Ether	2	2	135	ND	ND	ND	70.0	5.2
Ethyl t-butyl Ether	2	2	ND	ND	ND	ND	ND	ND
Di-isopropyl Ether	2	2	ND	ND	ND	ND	ND	ND
T-amyl-methyl Ether	2	2	ND	ND	ND	ND	ND	ND
Tert-Butanol	10	10	ND	ND	ND			
	-							

		ATLAS	ENVIRON	ATLAS ENVIRONMENTAL E	ENGINEERING, INC	NC, INC.		CHAIN OF	= CUSTODY	DY FORM
G&M #51 GITERPROJECT NAME	SITEMPO	BECT NAME G&M	NAME: STATE CO. #51			QUARTE	QUARTERLY WATER SAMPLING	MPLING		SUBMIT RESULTS TO
JOB NUMBER		SITE/PROJECT LOCATION 2155 S. ATLANTIC BOULEVARD	SITE/PROJECT LOCATION. 155 S. ATLANTIC BOULEVAR	ONE		ANALY	ANALYTICAL METHOD			ATLAS ENVIRONMENTAL ENG. 15701 CHEMICAL LANE
G51-Q405-FV		COMMER	COMMERCE, CA 90040	Q	TPHg	PHAL	8260B	METHANE		HUNTINGTON BEACH, CA 92649
SAMPLER(S) BIGNATION		11	7		8015M	8015M	BTEX MTBE FULL SCAN	NITRATE SULFATE FERROUS IRON	Z	ATTN: CONSTANTIN TUCULESCU PHONE NO. (714) 890-7129 FAX NO. (714) 890-7149
SAMPLE NUMBER (I.D.)	ZOSE DATE MM/DD	WHIW.	DEPTH BELOW GRADE (#)	NO. OF CONTAINERS						REWARKS
MW-1	10-0-01	45.6		4V-1B	×	×	×	×	-7/00 U/5-	
MW-2	50-01-01	10:21		4V-1B	×	×	×	×	1	7.
MW-3	10-10-05			4V-1B	×	×	×	×	7	3
MW-4	10-10-01	22:01		4V-1B	×	×	×	×		<i>ħ</i>
MW-5	10-10-01	\vdash		4V-1B	×	×	×	×		<u></u>
MW-6	10-10-01	-		4V-1B	×	×	×	×	• T	,
WW-7	10-00			4V-1B	×	×	×	×		7
WW-8	20.00	+		4V-1B	×	×	×	×		2
6-WW-9	70-010)	5:35		4V-1B	××	××	×	×	<u>'</u>	
MW-15	10:40			4V-1B	< >	< >		< >		0.0
MW-12	50-01-01	4:35		4V-1B	×	×	×	×		
TOATH OF ICANA				014				SHOOMSHAKESIS		**************************************
SAMPLES PROPERLY COOLED	PERLY COO	LED:	YES V	202	Ì			ŭ ₹	<u> </u>	
TEMPERATURE STORED	E STORED:	400	1		RELINQUIS	THE BY BRONA	(BIGNATURE)/COMPAN	1	DATE/TIME	RECEIVED BY (SIGNATURE)/COMPANY:
PRESERVATIVES ADDED YES SAMPLES ACCEPTED:	ES ADDEDA EPTED:	Ō.	TYPE: HCL	ON	K	X X	A ATCAS	20-0-01	50-0-01	224
F NOT, WHY:)	REMINDING	HED BY SIGNAT	OMATURE)/COMPAN	DATE/T	DATE/TIME	RÉCEIVED BY (SIGNATURE)/COMPANY:
SAMPLES PLACED IN LAB REFRIGERATOR YES NO REI	CED IN LAB F	REFRIGERAT	FOR REP. INITIALS R.W.	LS RW	RELINGUISH	-EDBY (SIGNAT	RELINQUISHED BY (SIGNATURE)/COMPAN	DATE/TIME	DATE/TIME	DATE/TIME RECEIVED BY (SIGNATURE)/COMPANY:
									_	

Name 10					1	
Variety in the presentation of GW flow between perpendicular to direction of GW flow between perpendicular to direction of GW flow between perpendicular to direction of GW flow concentration (2.57 titley w. 0.01-3.0 to 0.075 ft/day 0.01-3.0 to 0.01-3.0 to 0.075 ft/day 0.000 ft/day 0.01-3.0 to 0.075 ft/day 0.01-3.0 to 0.075 ft/day 0.01-3.0 to 0.075 ft/day 0.01-3.0 to 0.075 ft/day 0.000				_	* *	Velocity Range
Distance parallel to direction of GW flow 12 ft 12 ft 12 ft 13 ft 13 ft 14 ft	X axis dispersivity	10	ft	0.1-10	Gravel	up to 3 ft/d
Sittance perpendicular to direction of GW flow 2.5Te-49 ugst. 2.5Te-	Y axis dispersivity	0.33	ft	(0.33~0.65) D	Coarse Sand	up to 1.5 ft/d
Circumdwater velocity	Distance parallel to direction of GW flow	120	ft		Clean Sand	up to 1.0 ft/d
Source concentration 2.57E+09 ug/L 2.57E+06 Sandy Silt 0.01-0.05 ft/d Rate of discharge 2.58 ft/yr mg/L Soil Type Date of Exchange duration or dr 1.52E+11 ug/ft	Distance perpendicular to direction of GW flow	15	ft		Fine Sand	up to 0.5 ft/d
Rate of discharge	Groundwater velocity	0.075	ft/day	0.01-3.0	Silty Sand	up to 0.1 ft/d
Discharge duration or ct Sail Type Date Release Discoveree Sail Type Date of 1st Monit. Event Sail Type Date of 1st Monit. E	Source concentration	2.57E+09	ug/L	2.57E+06	Sandy Silt	0.01-0.05 ft/d
Discharge duration or ct Sail Type Date Release Discoveree Sail Type Date of 1st Monit. Event Sail Type Date of 1st Monit. E	Rate of discharge			mg/L		0.01 ft/d
Mass discharged per unit depth (C ₀ Qdr) 1.52E+11 ug/ft 1.52E+15 g/ft	•		•	g/ 22		
1.52E + 45 g/ft 180 ft 17 ft 180 ft 17 ft 1600 ft 17 ft 1600 ft 180 ft 18	~		•		Son Type	
Distance (X-s) to DG well 2 180 ft 5/28/2002	wass discharged per unit depth (C ₀ Qut)		~			
Distance (Y s) perpendicular to direction of flow 1600 ft 16	Distance (V.) to DC well 2		~			
Distance (X,) to drinking water well 1600 ft 250 ft						5/28/2002
Distance (Y ₂) perpendicular to direction of flow 250 ft	Distance (Y ₂) perpendicular to direction of flow					
Maximum concentration in drinking water well films when plume reached its peak in DW well lime when plume first reached 3 gg/l. in DW well lime remaining for plume to reach 5 ug/l. in DW well lime remaining for plume to reach 5 ug/l. in DW well well lime remaining for plume to reach 5 ug/l. in DW well well lime remaining for plume to reach 5 ug/l. in DW well well lime remaining for plume to reach 5 ug/l. in DW well well lime remaining for plume to reach 5 ug/l. in DW well well lime remaining for plume to reach 5 ug/l. in DW well well lime remaining for plume to reach 5 ug/l. in DW well well lime remaining for plume to reach 5 ug/l. in DW well lime remaining for plume to r	Distance (X ₃) to drinking water well	1600	ft			
Time when plume reached its peak in DW well 28000 days	Distance (Y ₃) perpendicular to direction of flow	250	ft			
Time when plume reached its peak in DW well 28000 days	Maximum concentration in drinking water well	0.00	ug/L		Ī	
Fine when plume first reached 5 ug/L in DW well 0 days		28000	days			
Time remaining for plume to reach 5 ug/L in DW well -24.4 years Well Name Well No Distance(x) Distance(y) C (ug/L) Time (days)						
Downgradient Well I at T ₁ Downgradient Well I at T ₁ MW-3 120 15 619 1883 174 15 385 1974 15 4 590 2138 15 798 2226 16 17 17 610 2403 18 18 333 2500 17 17 18 333 2500 17 18 333 2500 17 18 333 2500 18 19 10 10 10 10 10 10 10 10 10	Time remaining for plume to reach 5 ug/L in DW well		•			
Downgradient Well I at T ₁ Downgradient Well I at T ₁ MW-3 120 15 619 1883 174 15 385 1974 15 4 590 2138 15 798 2226 16 17 17 610 2403 18 18 333 2500 17 17 18 333 2500 17 18 333 2500 17 18 333 2500 18 19 10 10 10 10 10 10 10 10 10	Well Name	Well No	Distance(x)	Distance(y)	C (ug/L)	Time (days)
Γ ₂ 385 1974 Γ ₃ 357 2045 Γ ₄ 590 2138 Γ ₅ 798 2226 Γ ₆ 2130 2312 Γ ₇ 610 2403 Γ ₈ 333 2500 Γ ₉ 732 2606 Γ ₁₀ 732 2606 Γ ₁₀ 732 2606 Γ ₁₀ 732 2606 Γ ₁₁ 708 2792 Γ ₁₁ 708 2792 Γ ₁₁ 708 2792 Γ ₁₁ 70,7 2843 Γ ₁₂ 70,7 2843 Γ ₁₃ 1560 2902 Γ ₁₄ 751 2994 Γ ₁₅ 751 2994 Γ ₁₆ 751 2994 Γ ₁₇ Γ ₁₈ 751 2994 Γ ₁₈ 751 2994 Γ ₁₉ 751 2994 Γ ₁₉ 751 2994 Γ ₁₀ 751 2994 Γ ₁₁ 751 2994 Γ ₁₂ 751 2994 Γ ₁₃ 751 2994 Γ ₁₄ 751 2994 Γ ₁₅ 751 2994 Γ ₁₆ 751 2994 Γ ₁₇ 751 2994 Γ ₁₈ 751 2994 Γ ₁₉ 751 252 3091 Γ ₁₉ 751 253 2506 Γ ₂ 23.7 2702 Γ ₃ 138 2769 Γ ₄ 125 2843 Γ ₅ 23.5 2902 Γ ₆ 16.7 2994 Γ ₇ 7 ₈ 5.2 3091 Γ ₈ Γ ₉ 7 ₈				,v(j)	(-6-2)	(,-)
Γ ₂ 385 1974 Γ ₃ 357 2045 Γ ₄ 590 2138 Γ ₅ 798 2226 Γ ₆ 2130 2312 Γ ₇ 610 2403 Γ ₈ 333 2500 Γ ₉ 732 2606 Γ ₁₀ 732 2606 Γ ₁₀ 732 2606 Γ ₁₀ 732 2606 Γ ₁₁ 708 2792 Γ ₁₁ 708 2792 Γ ₁₁ 708 2792 Γ ₁₁ 70,7 2843 Γ ₁₂ 70,7 2843 Γ ₁₃ 1560 2902 Γ ₁₄ 751 2994 Γ ₁₅ 751 2994 Γ ₁₆ 751 2994 Γ ₁₇ Γ ₁₈ 751 2994 Γ ₁₈ 751 2994 Γ ₁₉ 751 2994 Γ ₁₉ 751 2994 Γ ₁₀ 751 2994 Γ ₁₁ 751 2994 Γ ₁₂ 751 2994 Γ ₁₃ 751 2994 Γ ₁₄ 751 2994 Γ ₁₅ 751 2994 Γ ₁₆ 751 2994 Γ ₁₇ 751 2994 Γ ₁₈ 751 2994 Γ ₁₉ 751 252 3091 Γ ₁₉ 751 253 2506 Γ ₂ 23.7 2702 Γ ₃ 138 2769 Γ ₄ 125 2843 Γ ₅ 23.5 2902 Γ ₆ 16.7 2994 Γ ₇ 7 ₈ 5.2 3091 Γ ₈ Γ ₉ 7 ₈	Downgradient Well 1 at T ₁	MW-3	120	15	619	1883
Γ ₄ 579 2045 Γ ₄ 590 2138 Γ ₅ 798 2226 Γ ₆ 2130 2312 Γ ₇ 610 2403 Γ ₈ 732 666 Γ ₉ 732 2666 Γ ₁₀ 830 2702 Γ ₁₁ 708 2769 Γ ₁₂ 70.7 2843 Γ ₁₃ 1560 2902 Γ ₁₄ 751 2994 Γ ₁₅ 751 2994 Γ ₁₆ 751 751 2994 Γ ₁₇ 751 2994 Γ ₁₈ 751 751 2994 Γ ₁₉ 751 751 2994 Γ ₁₉ 751 751 2994 Γ ₁₉ 751 751 2994 Γ ₁₀ 751 751 2994 Γ ₁₁ 751 751 2994 Γ ₁₂ 751 751 2994 Γ ₁₃ 751 751 2994 Γ ₁₄ 751 751 2994 Γ ₁₅ 751 751 2994 Γ ₁₆ 751 751 2994 Γ ₁₇ 751 751 2994 Γ ₁₈ 751 751 2994 Γ ₁₉ 751 751 2994 Γ ₁₀ 751 751 2994 Γ ₁₁ 751 751 2994 Γ ₁₂ 751 751 751 751 751 751 751 751 751 751						
Γ ₄ 590 2138 Γ ₅ 798 2226 Γ ₆ 798 2226 Γ ₇ 798 2226 Γ ₇ 798 2226 Γ ₈ 798 2226 Γ ₈ 798 2226 Γ ₈ 798 22130 2312 Γ ₇ 610 2403 333 2500 Γ ₈ 732 2606 Γ ₁₀ 732 2606 Γ ₁₀ 732 2606 Γ ₁₀ 732 2702 Γ ₁₁ 708 2769 Γ ₁₂ 708 2769 Γ ₁₂ 708 2769 Γ ₁₃ 708 2769 Γ ₁₄ 751 2994 Γ ₁₅ 751 2994 Γ ₁₅ 751 2994 Γ ₁₆ 751 2994 Γ ₁₇ 7 ₁₈ 7 ₁₈ 7 ₁₉ 7 ₁₈ 7 ₁₉ 7 ₁₉ 7 ₁₈ 7 ₁₉ 7 ₁						
Γ ₁₆ 798 2226 Γ ₁₆ 2130 2312 Γ ₁₇ 610 2493 Γ ₈ 333 2500 Γ ₉ 732 2606 Γ ₁₀ 830 2702 Γ ₁₁ 708 2769 Γ ₁₂ 700,7 2843 Γ ₁₃ 1560 2902 Γ ₁₄ 751 2994 Γ ₁₅ 268 3091 Γ ₁₆ 751 2994 Γ ₁₇ 718 Γ ₁₈ 719 Pate of Last Record 10/10/2005 Date of First Record 5/28/2002 Downgradient Well 2 at Γ ₁ MW-12 180 17 73.3 2606 Γ ₂ 23.7 2702 Γ ₃ 138 2769 Γ ₄ 125 2843 Γ ₅ 2902 Γ ₆ 16.7 2994 Γ ₇ 5.2 3091 Γ ₈ 799 Γ ₁₉ 799 Γ ₁₀ 799 Γ ₁₀ 799 Γ ₁₁ 799 Γ ₁₂ 799 Γ ₁₃ 799 Γ ₁₄ 799 Γ ₁₅ 799 Γ ₁₆ 799 Γ ₁₇ 799 Γ ₁₈ 799 Γ ₁₉ 799 Γ ₁₀ 799 Γ ₁₀ 799 Γ ₁₁ 799 Γ ₁₁ 799 Γ ₁₁ 799 Γ ₁₂ 799 Γ ₁₃ 799 Γ ₁₄ 799 Γ ₁₅ 799 Γ ₁₆ 799 Γ ₁₇ 799 Γ ₁₈ 799 Γ ₁₉ 799 Γ ₁₉ 799 Γ ₁₀ 799 Γ ₁₁ 799 Γ ₁₁ 799 Γ ₁₂ 799 Γ ₁₃ 799 Γ ₁₄ 799 Γ ₁₅ 799 Γ ₁₆ 799 Γ ₁₆ 799 Γ ₁₇ 799 Γ ₁₇ 799 Γ ₁₈ 799 Γ ₁₉ 799						
Τ ₀ 2130 2312 17						
Γ ₇ 610 2403 Γ ₈ 333 2500 Γ ₉ 732 2606 Γ ₁₀ 830 2702 Γ ₁₁ 708 2769 Γ ₁₂ 707 2843 Γ ₁₃ 1560 2902 Γ ₁₄ 751 2994 Γ ₁₅ 268 3091 Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₉ Date of Last Record 10/10/2005 Date of First Recore 5/28/2002 Downgradient Well 2 at Γ ₁ MW-12 180 17 73.3 2606 Γ ₂ 23.7 2702 Γ ₃ 138 2769 Γ ₄ 125 2843 Γ ₅ 23.5 2902 Γ ₆ 16.7 2994 Γ ₇ 5.2 3091 Γ ₈ 16.7 2994 Γ ₇ 5.2 3091 Γ ₈ 17.9 18.9 18.9 19.9 19.9 19.9 19.9 19.9 19						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_6				2130	2312
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_7				610	2403
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_8				333	2500
Γ ₁₀ Γ ₁₁ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₃ Γ ₁₄ Γ ₁₅ Γ ₁₅ Γ ₁₆ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₉ Date of Last Record Downgradient Well 2 at Γ ₁ Γ ₁₉ Date of Last Record T ₁₀ Γ ₁₀ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₉ Γ ₁₉ Γ ₁₀ Γ ₁₀ Γ ₁₁ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₃ Γ ₁₄ Γ ₁₅ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₉ Γ ₁₀ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₄ Γ ₁₅ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₉ Γ ₁₀ Γ ₁₁ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₄ Γ ₁₅ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₈ Γ ₁₉ Γ ₁₀ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₄ Γ ₁₅ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₈ Γ ₁₉ Γ ₁₉ Γ ₁₀ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₄ Γ ₁₄ Γ ₁₅ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₉ Γ ₁₉ Γ ₁₀ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₄ Γ ₁₄ Γ ₁₈ Γ ₁₉ Γ ₁₀ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₄ Γ ₁₅ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₉ Γ ₁₉ Γ ₁₀ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₄ Γ ₁₄ Γ ₁₅ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₉ Γ ₁₉ Γ ₁₀ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₄ Γ ₁₅ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₉ Γ ₁₉ Γ ₁₀ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₄ Γ ₁₅ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₉ Γ	T_9				732	2606
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					830	2702
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c} \Gamma_{14} \\ \Gamma_{15} \\ \Gamma_{16} \\ \Gamma_{17} \\ \Gamma_{18} \\ \Gamma_{19} \\ \end{array}$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\Gamma_{16} \\ \Gamma_{17} \\ \Gamma_{18} \\ \Gamma_{19} \\ \\ Date of Last Record \\ Downgradient Well 2 at \Gamma_1 MW-12 180 17 73.3 2606 \\ \Gamma_2 \\ \Gamma_3 \\ \Gamma_4 \\ \Gamma_5 \\ \Gamma_6 \\ \Gamma_7 \\ \Gamma_6 \\ \Gamma_{10} \\ \Gamma_{10} \\ \Gamma_{11} \\ \Gamma_{12} \\ \Gamma_{13} \\ \Gamma_{14} \\ \\ \\ \Gamma_{11} \\ \Gamma_{12} \\ \Gamma_{13} \\ \Gamma_{14} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_{15}				268	3091
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_{16}					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_{17}					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Date of Last Record 10/10/2005 Date of First Record 5/28/2002 Downgradient Well 2 at T₁ MW-12 180 17 73.3 2606 T₂ 23.7 2702 23.7 2702						
Downgradient Well 2 at Γ_1 MW-12 180 17 73.3 2606 Γ_2 23.7 2702 Γ_3 138 2769 Γ_4 125 2843 Γ_5 23.5 2902 Γ_6 16.7 2994 Γ_7 5.2 3091 Γ_8 Γ_9 Γ_{10} Γ_{11} Γ_{12} Γ_{13} Γ_{14}	*19					
Downgradient Well 2 at Γ_1 MW-12 180 17 73.3 2606 Γ_2 23.7 2702 Γ_3 138 2769 Γ_4 125 2843 Γ_5 23.5 2902 Γ_6 16.7 2994 Γ_7 5.2 3091 Γ_8 Γ_9 Γ_{10} Γ_{11} Γ_{12} Γ_{13} Γ_{14}	Date of Last Record	10/10/2005			Date of First Record	5/28/2002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			180	17		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		111 17-12	100	17		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T.					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T ₃					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_4					
Γ_7	T_5					
Γ_7	T_6				16.7	2994
Γ_8 Γ_9 Γ_{10} Γ_{11} Γ_{12} Γ_{13} Γ_{14}	T_7				5.2	3091
Γ_{10} Γ_{11} Γ_{12} Γ_{13} Γ_{14}	T_8					
Γ_{10} Γ_{11} Γ_{12} Γ_{13} Γ_{14}						
Γ_{11} Γ_{12} Γ_{13} Γ_{14}						
Γ_{12} Γ_{13} Γ_{14}						
Γ_{13} Γ_{14}						
Γ_{14}						
Γ_{14}	T_{13}					
	T_{14}					
115	T ₁₅					
	Date of Last Record	10/10/2005			Date of First Record	5/12/2004